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Conjugate natural convection
of a power law fluid in a

vertical finite thick channel
with heat sources
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Nomenclature

Introduction
The study of heat transfer in the natural convection of non-Newtonian fluid in a
channel or pipe is one of the most basic and important engineering mechanics
problems. In particular, the model of power law fluid has become a focus of
interest because of its suitability and applicability in practice. Many works have
been published in this field, such as Irvine et al.[1], Acrivos[2], Tien[3], Shenoy

T1,T = Temperatures of walls and
fluid

k1,k = Thermal conductives of
walls and fluid

Tw = Temperature on external
sides of walls

T∞ = Temperature of
surroundings

ρ = Fluid density
vk = Kinematic consistency
Cp = Specific heat
δ = Thickness of walls
Ω,Ω* = Continuous and grid regions
~ = Denotes dimensionless

quantities
H = The height of the channel
Prg = Generalized Prandtl number
Table I = Input parameters
Figures 1-8a = Velocity fields

corresponding to the cases
1-8

Figures 1-8c = Surfaces of heat distribution
of the cases 1-8

t = Time
x, y = Co-ordinates, x along

channel axis
u, v = Velocities in the x and y

directions
u0 = Velocity at channel entry
P′ = Pressure imbalance
β = Thermal expansion

coefficient
Q = Average heat transfer

parameter
Q1, Q2 = Uniform heat sources
b = Interplate spacing
S1, S2 = Dimensionless heat sources
n = Index of power law fluid
Grg = Generalized Grashof

number
Table II = Characteristics parameters

from the results of
computation

Figures 1-8b = Isothermal lines
corresponding to the 
cases 1-8

The author would like to thank Dr V.D. Quang, Dr Bill Roberts and Dr Jeremy Spearman for their
useful discussion and their support and encouragement.

International Journal of Numerical
Methods for Heat & Fluid Flow
Vol. 7 No. 2/3, 1997, pp. 200-214.
© MCB University Press, 0961-5539



Conjugate 
natural 

convection

201

and Mashelkar[4], Cho and Hartnett[5] and Moses and Hartnett[6], in which the
natural convection of non-Newtonian fluid has been studied.

In this paper, the extension is made by introducing different heat sources in
both the fluid and channel walls. At the same time, the influence of the heat
transfer into the channel walls is also taken into account. Omission of the effect
of wall thickness can cause inaccuracy in numerical simulation of problems in
practice.

Fourier’s equation in the general case and in Cartesian co-ordinates takes the
following form,

(1)

in which T1 is the temperature inside the walls, α the thermal diffusivity, t the
time and f(x, y, z, t) the heat source placed in the walls. However, here the paper
assumes that the process of heat-transfer is steady, one dimensional and
includes uniform heat sources in the walls as well as the fluid. This situation,
perhaps, is suitable in the case when the plate thickness is large enough not to
be ignored but small enough in comparison with the two other dimensions. The
equation therefore can be reduced to the one dimensional equation.

The natural convection equation with boundary conditions is solved using a
finite difference method. The fields of velocity and temperature, as well as
dimensionless characteristics of heat exchange and the averaged velocity, are
determined.

The governing equations and boundary conditions
For the steady 2D convection heat transfer with a power law fluid in a vertical
channel of thick walls and with heat sources distributed uniformly in both the
fluid and the walls, and assuming that the heat transfer into the walls only
occurs in a horizontal direction owing to the channel thickness being very small
in comparison with the channel height, the governing equations are as follows,

(2)

(3)

(4)
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(5)

in which u and v are the velocities in the x and y directions respectively, with the
x axis along the channel; ρ the fluid density; p′ the pressure imbalance; vk the
kinematic consistency; n the flow behaviour index for power law fluid; g the
acceleration of gravity; β the thermal expansion coefficient; T the temperature
of fluid; T∞ the temperature of the surroundings; k the thermal conductivity; Cp
the specific heat; b the interplate spacing; δ the thickness of the walls; Q1 and Q2
the uniform heat sources placed in the walls and in the fluid respectively; and
Tw the temperature on the external sides of the walls. The pressure imbalance,
p′, is defined by

(6)

where p0 and ρ∞ are outside ambient pressure and density respectively.
Introducing the following dimensionless variables,

(7)

and dropping tilde signs for convenience, we obtain the basic equations in
dimensionless form as follows,

(8)

(9)

(10)
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(11)

Because of the symmetry, we only consider a half-channel flow field. In this
case, the boundary conditions are as follows,

(12)

where k1 is the thermal conductivity for walls. It should be noted that the three
last boundary conditions are introduced to close the problem and the last one is
considered as the conjugate condition.

Numerical solutions and discussions
Let Ω be the continuous region of consideration for the fluid

and Ω* be the corresponding grid region

in which ∆y is constant and ∆x is variable. Using the three-point difference
formulae, equations (8)-(11) and the boundary conditions (12) can be easily
discretized. Owing to the feature of difference formulae, the equations (10) and
(11) are solved first. The difference equation corresponding to equation (10) is,

(13)

in which,
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In order to get the boundary condition for equation (13) at y = 1/2 to correspond
with i = N, it is necessary to integrate equation (11) and then to use the above
conjugate condition, with the results,

(14)

Applying the finite difference method to the boundary condition at y = 0 for T,
we obtain

(15)

It is clear that the equations (13)-(15) represent a tridiagonal linear equation
system which is easy to solve. Next the difference equations corresponding to
equation (9) are solved for u and p′. However, because of the appearance of p′ in
equation (9), a supplement equation is required. In a way similar to that of Irvine
et al.[1], we introduce the condition representing the conservation of fluid mass
in the channel:

(16)

For equation (8), we can directly integrate on the base of the given solution of u.
Thus with initial estimate[1] of u0, the iteration is done until p′ = 0 at x = 1.

In order to illustrate the influences of the wall thickness as well as the heat
sources in the paper, several concrete cases have been computed as examples.
The common input data for all the cases are shown in Table I, except for case 9

Tw = 25°C T∞ = 15°C
b = 2cm H = 20cm
ρ = 1,000kg/m3 Cp = 4.18 103J/kg.K
k = 0.597W/m.K vk = 7.35 10–5m2/s2–n

β = 1.8 10–4K–1 n = 0.66
δ = b/8

Table I.
Input parameters
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with δ = 0, which has been studied before[1]. However, it should be noted that
only the cases where the channel walls of thermal conductivity are four and ten
times larger than that of fluid are considered here. The algorithm has been
coded in FORTRAN 77 language (FTN77/386) to run under graphics mode, so
the computation results are presented by curves, facilitating the understanding
of the behaviour of solutions and enabling the easy adjustment of the value of
u0 at the entrance to the appropriate value.

The computational results for cases 1-8 are shown in Table II and in Figures
1-8; case 9 is that of Irvine et al.[1]. The final results of interest for different cases
are the characteristics parameters: the velocity at channel entry u0 and the
average heat transfer Q (see Table II).

Figures 1a-8a present the velocity vector fields in the plane of half channel,
Figures 1b-8b present-isothermal lines and Figures 1c-8c are the surfaces of
heat distribution for cases 1-8 respectively. A comparison of the results
obtained in Table II, as well as in Figures 1-8, gives rise to the following
remarks:

• Cases 7-8 in Table II and the results of computations illustrated in
Figures 7-8 reflect the influence of heat transfer into the channel wall; the
velocity u0 at entrance and the average heat transfer Q decreased
considerably in comparison with case 9. At the same time, it is also
shown that this influence will be ignored when k1/k >> 1, i.e. it becomes
the case of the channel without thickness (case 9).

• Cases 1-6 present the influence of both the heat sources and the thickness
of channel at different levels which are illustrated in Table II and Figures
1-6. The existence of heat sources under 50kW/m3 does not change the
distribution of heat very much in the channel. However, this effect will be
large when the heat source is from 50kW/m3 and placed in the fluid (case
6, Figure 6). 

• In all the cases, it can be seen that next to the channel entrance flow is
directed towards the channel axis, and the intensity of flow velocities are
very large, while elsewhere the flow is nearly parallel to the channel axis.

Cases k1/k Q1(KW/m3) Q2(KW/m3) u0(cm/s) Q(W/m)

1 10 3 3 1.3 475.03
2 4 3 3 1.22 460.5
3 10 10 10 1.34 475.25
4 10 10 0 1.28 475.06
5 10 50 0 1.29 475.52
6 10 0 50 1.55 475.95
7 4 0 0 1.21 460.23
8 10 0 0 1.27 474.94
9 ∞ 0 0 1.33 486.0

Table II.
The characteristics

parameters from the
results of computation
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Figure 1.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half
channel (c) for case 1
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Figure 2.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half

channel (c) for case 2
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Figure 3.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half
channel (c) for case 3



Conjugate 
natural 

convection

209

Figure 4.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half

channel (c) for case 4
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Figure 5.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half
channel (c) for case 5
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Figure 6.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half

channel (c) for case 6
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Figure 7.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half
channel (c) for case 7
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Figure 8.
Map of isothermal lines
(a), velocity field (b) and
heat distribution in half

channel (c) for case 8
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Conclusion
Using a finite difference method, the governing equations for the flow of a
power law fluid in a finite vertical channel of thick walls with heat sources
uniformly distributed have been solved completely. The fields of temperature
and fluid velocities as well as average heat transfer, illustrating numerical
results, have been obtained for different cases. The results showed that the
influences of wall thickness and heat sources will become considerable when
the substance channel wall has small thermal conductivity and the heat sources
are large enough.
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